Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As the volume of data collected at monitored volcanoes continues to expand, researchers will need quick, reliable, and automated methods of inverting those data into useful models of the underlying magma systems. Recently adapted from other fields for use in volcanology, the Ensemble Kalman Filter (EnKF) is one such inversion technique that has been used to produce several successful forecasts and hind‐casts of volcanic unrest, correlating geodetic deformation with mechanical stresses around the magma reservoir. However, given the similarity in which changes to a reservoir's size and pressure are expressed at the surface, the filter can have trouble fully resolving magmatic conditions. In this study, we therefore test several different published variations of the EnKF workflow to produce an optimal configuration for use in future forecasting efforts. By generating synthetic observations of ground deformation under known conditions and then assimilating them through different implementations of the EnKF, we find that many variants favored in other fields underperform for this specific application. We conclude that correlations between model parameters that develop within the EnKF's Monte Carlo ensemble distort the filter's ability to correctly update the model state, causing the filter to systematically favor changes in some parameters over others and ultimately converge to a partially inaccurate solution. This effect can be somewhat mitigated by interrupting these parameter correlations, and the filter remains sensitive to many aspects of the magma system regardless. However, further research and novel approaches will be needed to truly optimize the EnKF for use in volcanology.more » « less
-
Abstract Forecasting the onset of a volcanic eruption from a closed system requires understanding its stress state and failure potential, which can be investigated through numerical modeling. However, the lack of constraints on model parameters, especially rheology, may substantially impair the accuracy of failure forecasts. Therefore, it is essential to know whether large variations and uncertainties in rock properties will preclude the ability of models to predict reservoir failure. A series of two‐dimensional, axisymmetric models are used to investigate sensitivities of brittle failure initiation to assumed rock properties. The numerical experiments indicate that the deformation and overpressure at failure onset simulated by elastic models will be much lower than the viscoelastic models, when the timescale of pressurization exceeds the viscoelastic relaxation time of the host rock. Poisson's ratio and internal friction angle have much less effect on failure forecasts than Young's modulus. Variations in Young's modulus significantly affect the prediction of surface deformation before failure onset when Young's modulus is < 40 GPa. Longer precursory volcano‐tectonic events may occur in weak host rock (E< 40 GPa) due to well‐developed Coulomb failure prior to dike propagation. Thus, combining surface deformation with seismicity may enhance the accuracy of eruption forecast in these situations. Compared to large and oblate magma systems, small and prolate systems create far less surface uplift prior to failure initiation, suggesting that more frequent measurements are necessary.more » « less
-
Abstract Extensive vertical deformation (>4.5 m) observed at Sierra Negra volcano Galápagos, Ecuador, between 1992 and the 2005 eruption led scientists to hypothesize that repeated faulting events relieved magma chamber overpressure and prevented eruption. To better understand the catalyst of the 2005 eruption, thermomechanical models are used to track the stress state and stability of the magma storage system during the 1992–2005 inflation events. Numerical experiments indicate that the host rock surrounding the Sierra Negra reservoir remained in compression with minimal changes in overpressure (~10 MPa) leading up to the 2005 eruption. The lack of tensile failure and minimal overpressure accumulation likely inhibited dike initiation and accommodated the significant inflation without the need for pressure relief through shallow trapdoor faulting events. The models indicate that static stress transfer due to the Mw5.4 earthquake 3 hr prior to the eruption most likely triggered tensile failure and catalyzed the 2005 eruption.more » « less
An official website of the United States government
